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Abstract

2-Hydroxy-1-naphthaldehyde oxime1 undergoes a one-poto- and peri-oxidative cyclisation with lead(IV)
acetate to give the isomeric naphtho[1,2-d]isoxazole 2-oxide2 and naphtho[1,8-de][1,2]oxazine3. A commono-
nitroso quinonemethide intermediate is invoked for both isomers. © 2000 Elsevier Science Ltd. All rights reserved.
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Isoxazoles and their benzo derivatives have numerous applications in medicine and agriculture.1

1,2-Oxazine derivatives on the other hand are mainly used as intermediates in organic synthesis.2

Oxidative cyclisation of suitablyo-disubstituted aromatics with lead(IV) acetate (LTA) is a particularly
effective route to a variety of nitrogen heterocycles.3 This approach has been applied to the synthesis
of 1,2-benzisoxazole 2-oxides.4 To date, no oxidative reaction has been used in the preparation of 1,2-
oxazines. In particular,peri-annelated naphtho-1,2-oxazines are synthesised byperi-cyclisation of 8-
acyl-1-naphthols.5 A recent review covers the synthesis ofperi-naphthalene heterocycles.6

During our studies on heterocyclic mesomeric betaines we have observed that reaction of1 with LTA
affords a mixture of the isomers2 and3 (Scheme 1).7a After separation by column chromatography the
products were obtained in 35 and 42% yield, respectively. Evidently this reaction provides easy access
to two diverse isomeric ring systems. Confirmation of the structure of3 was provided by ring opening
to 2,8-dihydroxy-1-naphthonitrile47b followed by methylation to 2,8-dimethoxy-1-naphthonitrile5. The
latter has been prepared independently from 2,8-dihydroxy-1-naphthaldehyde.8 Compounds2–49 were
characterised by satisfactory elemental analyses, and from their mass,13C and1H NMR spectra.

In Criegee’s10 work on the oxidation of hydroxy compounds by LTA, it was proposed that an
organolead intermediate is formed via either a cyclic or an acyclic transition state. It is, therefore,
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Scheme 1.

reasonable here to assume an analogous intermediate originating from the reaction of1 with LTA. This
intermediate (Scheme 2) may be either6 or 7. Both of these, through rotation of the complexed6 or
free oxime7 side-chains, can decompose too-nitroso quinonemethides8 and 9. Intermediate8 then
undergoes ano-cyclisation to its heterocyclic valence isomer2, while intermediate9 undergoes aperi-
ring closure involving the nitroso group to give intermediate10 that aromatises to3. Theperi-cyclisation
is an intramolecular nucleophilic substitution triggered by the quinonoid structure. This implies that the
o-hydroxy group in1 is a prerequisite for the formation of3.

Scheme 2.

Independent reaction of2 with LTA gave only starting material suggesting that a route to3 via
rearrangement of2 can be ruled out. Another route involving acetoxylation of intermediate9 followed
by acyl rearrangement and, finally, ring closure11 to 3 can also be ruled out, since reaction of1 with LTA
in the presence of potassium carbonate also led to products2 and3. The route proposed for the formation
of 3 (Scheme 2) introduces a new approach toperi-fused naphtho-1,2-oxazines. On the other hand, the
cyclisation to3 and ring opening to4 is in fact a novel overall intramolecular nuclear hydroxylation.
Oxidation, and in particular hydroxylation and oxygenation, is an important biological process12 for
which the photochemistry of heterocyclicN-oxides has served as a model.13 Its potential in enzyme-
catalysed reactions has been pursued and recognised in the last decade.14

In summary, we have presented a novel reaction for the simultaneous formation of naphtho[1,2-
d]isoxazole 2-oxide and naphtho[1,8-de][1,2]oxazine ring systems through the concept of a common
intermediate.

Currently, investigations are in progress with regard to the scope and limitations of this reaction. Efforts
in unraveling the interesting chemistry of the products are also underway and will be reported soon.
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